Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(fmap, t_f), x)
APP(app(twice, f), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(cons, app(f, x)), app(app(fmap, t_f), x))
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(cons, app(f, x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(fmap, t_f)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(fmap, t_f), x)
APP(app(twice, f), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(app(cons, app(f, x)), app(app(fmap, t_f), x))
APP(app(map, f), app(app(cons, h), t)) → APP(cons, app(f, h))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(cons, app(f, x))
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(fmap, t_f)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
APP(app(map, f), app(app(cons, h), t)) → APP(app(cons, app(f, h)), app(app(map, f), t))

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(twice, f), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(twice, f), x) → APP(f, app(f, x))
APP(app(twice, f), x) → APP(f, x)
APP(app(fmap, app(app(cons, f), t_f)), x) → APP(f, x)
APP(app(map, f), app(app(cons, h), t)) → APP(f, h)
The remaining pairs can at least be oriented weakly.

APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (1/4)x_1   
POL(t_f) = 0   
POL(cons) = 0   
POL(map) = 1/4   
POL(app(x1, x2)) = (1/4)x_1 + (11/4)x_2   
POL(twice) = 1   
POL(fmap) = 1/2   
POL(nil) = 7/4   
The value of delta used in the strict ordering is 1/64.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)

The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP(app(map, f), app(app(cons, h), t)) → APP(app(map, f), t)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (4)x_2   
POL(cons) = 2   
POL(map) = 0   
POL(app(x1, x2)) = 1 + (4)x_2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app(app(twice, f), x) → app(f, app(f, x))
app(app(map, f), nil) → nil
app(app(map, f), app(app(cons, h), t)) → app(app(cons, app(f, h)), app(app(map, f), t))
app(app(fmap, nil), x) → nil
app(app(fmap, app(app(cons, f), t_f)), x) → app(app(cons, app(f, x)), app(app(fmap, t_f), x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.